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Abstract. We have studied the diffraction of a focussed
laser beam by single fibres of glycerinated rabbit psoas
muscle as a function of the angle of incidence. Diffraction
efficiencies as high as 34% were observed at the first-
order Bragg angle, indicative of well-ordered striated fi-
bres with a strong periodic modulation of the refractive
index. A theory is presented to account for our observa-
tions based upon the coupled-wave model developed by
Kogelnik (1967) and Magnusson and Gaylord (1977) for
the description of thick phase gratings in holography. We
have solved the coupled-wave equations on a computer
using a realistic index modulation taken from the mea-
surements of Huxley and Hanson (1957). Comparison of
theory with experiment shows that coupled-wave effects
are indeed present in well-ordered muscle fibres, and the
observed diffraction efficiency is in quite good agreement
with what would be expected theoretically. Most impor-
tantly, the computer model allows us to calculate the
diffraction efficiency for curved striations, which are ob-
served for real muscle fibres under a microscope. The
sensitivity of the diffraction efficiency to curvature of the
striations may have implications for the interpretation of
other optical experiments on muscle. We also consider the
effects on our measurements of the focussing lens and
refraction by the cylindrical fibre.
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index

Introduction

Optical diffraction by striated muscle was first reported
by Ranvier (1874) over a century ago. He suggested that
the regular striation pattern, which had previously been
described by Bowman (1840), acted like a plane diffrac-
tion grating with a grating element equal to the sarcomere
length. This simple view of diffraction by muscle endured
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for many years, although Sandow (1936) demonstrated
that the relative intensities of the diffraction orders from
whole muscle depended on the muscle thickness, and he
interpreted this as evidence for multiple diffraction by
successive layers of muscle fibres inside the muscle. Opti-
cal diffraction by single muscle fibres was first investigat-
ed by Buchthal and Knappeis (1940), and somewhat later
the use of the diffraction pattern as a sarcomere-length
gauge was developed by Blinks (1965) and by Cleworth
and Edman (1969), the latter authors using a laser. How-
ever, in a length gauge it is only the positions of the diffrac-
tion orders which are important, and these are in fact
correctly given by the simple diffraction-grating formula
(Cleworth and Edman 1969) irrespective of the fibre
thickness. It is when we consider the intensities of the
diffraction orders that a more sophisticated theory is re-
quired; this, together with new experimental measure-
ments, forms the subject of the present paper.

The effect on the diffraction pattern of the three-di-
mensional structure of muscle fibres themselves was ne-
glected until relatively recently. Kawai and Kuntz (1973)
investigated diffraction by single fibres but regarded them
as one-dimensional gratings exhibiting negligible multi-
ple diffraction. The three-dimensional structure of muscle
fibres was considered by Fujime and Yoshino (1978) in
their theoretical treatment of diffraction, but the most
important breakthrough was made by Riidel and Zite-
Ferenczy (1979), who demonstrated experimentally that
the intensity of a diffraction peak from a single muscle
fibre is a maximum when the Bragg condition is satisfied.
On the basis of this, one might regard a muscle fibre as a
three-dimensional sarcomere lattice capable of producing
optical Bragg diffraction analogous to the Bragg diffrac-
tion of X-rays by crystals. This analogy is, however, only
partly true. In X-ray crystallography, Bragg diffraction is
usually only observed at, or very near to, the Bragg angle,
whilst in muscle the diffraction peaks are present at any
angle of incidence (including normal incidence), just as for
a diffraction grating. Therefore, although Bragg effects do
indeed occur for single muscle fibres, it was recognised by
Riidel and Zite-Ferenczy (1980) and also by Baskin et al.



88

vz
7 i
SN/

(a)

(1981) that a quite sophisticated theory is required to
account for the observed intensities of the diffraction
orders. These authors realised that optical diffraction by
a muscle fibre is very similar to the diffraction of light by
a thick holographic phase grating, for which a theory had
been developed by Kogelnik (1967) and was later extend-
ed by Magnusson and Gaylord (1977). Kogelnik’s theory
resolves the apparent contradiction between the Bragg
and diffraction-grating viewpoints by considering in de-
tail the propagation of light through a striated medium.

A rather different theoretical approach to this problem
has recently been published by Huxley (1990). In his the-
ory the striations are taken to act as optical waveguides.
This is a perfectly correct viewpoint, but the theory has
several practical disadvantages compared to the holo-
graphic approach. In the first place, the striations are
taken to consist of uniform 4- and I-bands, in contrast to
the more complex refractive-index modulation which was
determined experimentally by Huxley and Hanson (1957)
for rabbit psoas muscle. Secondly, the waveguide ap-
proach becomes cumbersome away from normal inci-
dence owing to the number of boundary conditions which
have to be satisfied. Thirdly, as recognised by Huxley
himself, the waveguide approach cannot readily take ac-
count of the curvature of the striation pattern, which was
shown by Brenner (1985) to affect the diffracted intensity.

In this paper we show how Kogelnik’s holographic
theory can be applied to understand optical diffraction by
well-ordered muscle fibres possessing regular cross-stria-
tions, even though these may be curved. The mathemati-
cal details are explained fully in the following section, but
readers who wish to omit the mathematics may be able to
understand the essential points by referring to Figs. 1-10.
The remainder of the paper describes our quantitaive ex-
perimental investigation of optical diffraction by single
muscle fibres. We have taken great care to eliminate opti-
cal artefacts from the experiment, and the necessary pre-
cautions are described in some detail. The results which
we have obtained provide strong support for our theoret-
ical approach. We feel that this is an important contribu-
tion not because the optical properties of muscle are
themselves of direct physiological importance, but rather

Fig. 1a,b. A slab of cross-striated
material of period d is shown in
a together with diffraction order
for =0, +1 and 2 arising from
an incident beam of wavevector
K, at angle of incidence w. The
Cartesian co-ordinate system used
in the theoretical analysis is also
shown. Coupled waves with
wavevectors kg, k, k,, etc. given
by (3) are produced inside the
slab. These are shown in

b together with the reciprocal lat-
(b) tice vector G

because optical techniques have been widely used for
many years in phsysiological experiments without the
proper physical understanding which is necessary for
their correct interpretation.

Theory of diffraction by well-ordered muscle fibres
Coupled-wave theory of diffraction by a striated medium

Consider first the diffraction of light by an idealized slab
of cross-striated material as shown in Fig. 1a. Light of
wave-vector K, is incident at angle w, and the striations
of period d produce diffraction orders, some of which are
shown labelled 0, +1, and 2. Following Kogelnik (1967),
we wish to calculate the intensities of the diffraction
orders by solving the wave equation for light propagation
inside the striated medium. We choose a Cartesian co-
ordinate system as shown, where x is normal to the slab,
y 1s perpendicular to the striations, and z is perpendicular
to the scattering plane. The light is taken to be polarized
along z, parallel to the striations (so-called H-mode po-
larization), so that in complex notation the z-component
of the electric field at time ¢ may be written as

EZ(X,y,t)=E(X,y) CXP(_th)s (1)

where E(x,y) is the complex electric-field amplitude, j is
—1, and Q is the angular frequency of the light. The
spatial part of the wave equation for E, is then

0*E L O’E Q% &(y)
ox2 = 0y? c?

where ¢ is the speed of light in vacuo, and e(y) is the
optical dielectric constant of the striated medium; ¢ is a
function of y alone because the striations are assumed to
lie in the xz-plane. To gain some physical insight into this
problem it is instructive to consider the wave-vector dia-
gram shown in Fig. 1b. In the absence of diffraction, the
incident wave, whose wave-vector is K|, in the external
medium, would simply be refracted into the zeroth-order
wave of wave-vector k inside the slab. In the presence of

E=0, )



striations, however, additional diffracted waves are pro-
duced inside the slab with wave-vectors given by

k,=k,+1G, A3)

where [ is an integer, and G is the reciprocal-lattice vector
of magnitude 2n/d directed perpendicular to the stria-
tions. As the light propagates through the medium, each
diffraction order is itself diffracted by the striations, so
that a set of coupled waves exists inside the slab. This is in
essence what Sandow (1936) recognised as multiple dif-
fraction in a whole muscle containing many muscle fibres,
but, as we shall show, coupled-wave effects are in fact
significant even for a single fibre.

The amplitude of each coupled wave changes as the
light propagates through the slab. To solve the wave Eq.
(2), we decompose E(x,y) into coupled waves inside the
slab as

E(x,y) = le E(x) exp(jk;¥) , 4)

where E,(x) is the amplitude of the /th coupled wave at a
distance x inside the slab, and r is the position vector of
point (x, y). The dielectric constant arising from the peri-
odic cross-striations may also be expanded in a Fourier
series as

e(y) = % &, exp(jhGy), &)

where & is an integer labelling the Fourier coefficient ¢,.
Substituting for E(x,y) and ¢(y) in (2) from (4) and (5),
neglecting d? E,/dx? on the assumption that E,(x) is slow-
ly varying, we find that

dE (k2 =k | Q2
d—xl:](OZk L E + / 3 2 6E_,, (6)

! 2ka h#0

where k, is the x-component of the wave-vector common
to all of the coupled waves inside the slab. Equation (6) is
the coupled-wave equation essentially as derived by Mag-
nusson and Gaylord (1977) following Kogelnik (1967). It
is the second term on the RHS of this equation which is
responsible for coupling E, to other waves E,_, whenever
the Fourier component g, is non-zero. The first term on
the RHS changes the phase of E,, since in general k,#k,
inside the slab, as can be seen from Fig. 1b. Taking ac-
count of Snell’s law together with (3), we find that

k2 2 47'[2 . 2
F=k%+ s (sinw —11/d)?, (7)
and
27'[”0 ) IS
k= =2 (I —sin’w/nd)?, ®)

where n, is the average refractive index of the slab, and
both the angle of incidence w and the light wavelength 1
are measured in vacuo.

The refractive-index modulation in muscle

The refractive-index modulation in single myofibrils from
glycerinated rabbit psoas muscle was studied many years
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Fig. 2a—c. The structure of a single sarcomere of length 4 is shown
schematically in a. The principal components are A-filaments of
length a, I-filaments of length b, and Z-lines of thickness z. The
overall index modulation An(y) is sketched in b, and the individual
contributions, 4n,, Any and An,, are drawn in ¢ (not to scale)

ago by Huxley and Hanson (1957) using interference mi-
croscopy. They found that the main contributions arise
from the A- and I-filaments together with the Z-lines as
shown schematically for a single sarcomere of length d in
Fig. 2a. The index modulation 4n(y) itself is drawn in
Fig. 2b. It is rather more complex than the uniform
A- and I-bands considered by Huxley (1990) in his wave-
guide approach to optical diffraction. The Fourier com-
ponents of the index modulation may be determined us-
ing the equation

1 +4/2
An, = 5 -L/'"(y) exp(—jhGy)dy. )
An(y}is formed from the three individual contributions as
sketched in Fig. 2¢: An, from the A-filaments, An, from
the I-filaments, and 4n, from the Z-lines.
The dielectric constant ¢ is related to refractive index
n by

e=n’. (10)

Provided that the index modulation 4n(y) is small com-
pared to the average refractive index n,, we can write the
Fourier components of the dielectric constant (for h #0)
as

g =2ny4n, . (11)
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Analysing the three contributions to the index modula-
tion separately leads to the following Fourier compo-
nents:

Any, = %’3 sin(hma/d) , (12a)
where a is the length of the A-filaments;

Any, = _hAn”B sin[hn(d—b)d], (12b)
where b is the length of the I-filaments; and

Ang, = Z{%cos(nh), (12¢)

where z, the width of the Z-line, is assumed to be much
smaller than the sarcomere length d.

The absolute contribution of the muscle proteins to
the refractive index was investigated by Huxley and
Niedergerke (1958) for fresh single fibres of frog semi-
tendinosus muscle. They found that the refractive index of
the A-band was 0.0128 greater than that of the I-band,
corresponding to a difference in protein concentration of
7.1 g/100 ml (assuming that 1 g/100 ml of protein in-
creases the refractive index by 0.0018). This is in quite
good agreement with what one would estimate for the
myosin concentration based on the known structure of
the thick filaments: taking the filament spacing to be
44.14+0.2 nm (Brenner and Yu 1985), and assuming 6
myosins per 42.9 nm with a molecular weight of (4.8 £0.2)
x 10° daltons, we estimate the myosin concentration to
be 6.62+0.28 g/100 ml. However, as we describe later in
this paper, our actual measurements were performed on
glycerinated muscle fibres mounted in a solution of 50%
glycerol and 50% relaxing solution. We have determined
the refractive-index increment for 1 g/100 ml of protein in
this medium to be 0.00111 £0.00005 using an Abbe re-
fractometer. The contribution of myosin to the refractive
index is therefore estimated to be 0.0074 +0.0004, and this
is taken to be the magnitude of the index modulation 4n
in Fig. 2b and Eq.(12a).

To find the Fourier components of the index modu-
lation we must include the relative weightings of the dif-
ferent contributions as established by Huxley and Han-
son (1957). They showed that An,=2A4ng, and taking
a=1.5 ym and b=2 pm they estimated that 54.5% of the
muscle protein was in the A-filaments, 36.4% in the I-fil-
aments, and 6% in the Z-lines. Since the contribution to
refractive index is proportional to the protein concentra-
tion, we estimate that zAn, =(6/54.5)aAn . Note that we
have omitted any contribution from Huxley and Han-
son’s “S-filaments” joining the ends of the [-filaments and
accounting for about 3.1% of the muscle protein. Recent
work by Wang and Wright (1988) seems to show that the
protein titin connects the Z-lines to the M-lines at the
centre of the sarcomere, but if this protein is assumed to
be fairly evenly distributed then it will not contribute
significantly to the index modulation.

The two-beam approximation

A very useful approximate solution to the coupled-wave
equation can be obtained by restricting the analysis to the
interaction between the zeroth-order incident beam and
the first-order diffracted beam. In this two-beam approx-
imation the coupled-wave Eq. (6) reduces to a simple pair
of differential equations:

dE,

dx =jo.E,, (13a)
and
dE, , ,
dx =—jrE, +jo,Ey, (13b)
where

k? —k?
=" (14a)
and

41n,An
¢, = —ﬁ& (14b)

The coefficients y, and ¢, therefore depend on the angle
of incidence w by virtue of equations (7) and (8) for k? and
k..
It is straightforward to solve the coupled Egs. (13a)
and (13b) inside the striated medium subject to the
boundary condition E, =0 at x=0, and thus we find that

the first-order diffraction efficiency is

|E,(x)[? 497 21 /.2 2
fl(xyco): IEO(O)lZ = X%+4§0% sin [ X1+4(P1 x/2]

(15)

This equation was first derived by Kogelnik (1967) and is
commonly used in the theory of volume phase holograms
(see, for instance, Hariharan 1984). For given w, (15)
shows how the diffraction efficiency depends on the thick-
ness x of the striated medium. (We assume, of course, that
reflections from the boundaries of the medium may be
neglected, which is a reasonable approximation in the
case of a muscle fibre immersed in saline.)

It is particularly interesting to consider the diffraction
efficiency at the first-order Bragg angle wy, which is deter-
mined by the Bragg equation

2d sinwg = 4. (16)

In fact, when the Bragg condition is satisfied the wavevec-
tors k, and k, in Fig. 1b form two sides of an isosceles
triangle with the reciprocal lattice vector G along its base.
In that case, k,=k,, and the coefficient y, in equation
(14 a) therefore vanishes. Hence, the diffraction efficiency
at the Bragg angle is given by

filx,wp) = sin’ (;x). (a7

The variation of first-order Bragg intensity with thickness
predicted by this equation is shown in Fig. 3, where we
have taken the optical constants n, and Ar, appropriate
to a muscle fibre with a sarcomere length of 3.1 pm. The
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Fig. 3. Theoretical first-order diffraction efficiency f; at the Bragg
angle as a function of thickness for a rectangular slab in the two-
beam approximation according to (17). The optical parameters used
were appropriate to glycerinated psoas muscle: a=1.5 pm, =2 pm,
d=3.1 um, and 4n ,=0.0074. The sample is assumed to be mounted
in glycerinating solution of refractive index n, =1.405
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Fig. 4. Theoretical “w-scan” showing the variation of the first-order
diffraction efficiency f; with angle of incidence w according to the
two-beam-approximation (15). The calculation was performed for a
slab of thickness 80 um with other parameters as in Fig. 3. Note that
normal incidence occurs at w=0 and the main peak occurs at the
first-order Bragg angle determined by (16)

sinusoidal intensity variation is readily apparent in this
figure: the diffraction efficiency reaches 100% at a thick-
ness of about 185 pum, at which point the zeroth-order
beam is completely extinguished, whilst at about 350 um
the Bragg intensity falls to zero, when all of the light has
returned to the zeroth-order beam. This effect was also
noted by Huxley (1990) using his waveguide theory. Sim-
ilar coupled-wave behaviour is well-known in the “dy-
namical” theory of X-ray diffraction (see, for instance,
Cowley 1975), where it is generally referred to as the Pen-
dellosung effect by analogy with the behaviour of coupled
pendulums. However, we prefer not to use the term “dy-
namical diffraction” in the case of muscle as this might
cause confusion with the dynamics of muscle contraction
itself.

Muscle fibres typically have thicknesses in the range of
50—-100 pm. The Bragg diffraction to be expected from
Fig. 3 is therefore 20—60%, so that coupled-wave effects
are likely to be quite significant in optical diffraction from
single muscle fibres. The high diffraction efficiency and
the corresponding attenuation of the zeroth-order beam
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are obvious features to look for experimentally, but a
more detailed test of the theory may be obtained by mea-
suring the diffraction efficiency as a function of the angle
of incidence w to produce a so-called “w-scan” (Baskin
et al. 1981). Away from the Bragg angle, the coefficient y,
no longer vanishes and the theoretical diffraction efficien-
cy in the two-beam approximation is given by (15). The
predicted angular dependence of the diffraction efficiency
is shown in Fig. 4 for a sample of thickness 80 um and
with other parameters as for Fig. 3. The diffraction effi-
ciency reaches a maximum value of 43% when the angle
of incidence w is equal to the Bragg angle (in this case
about 5.9°), and subsidiary peaks occur either side of this.
Note that Fig. 4 does not imply any structure in the dif-
fraction order itself, but rather it just shows how the in-
tensity of the first-order diffraction peak varies with the
angle of incidence. One can see from (15) that, in the case
where ¢, x <, the first minima either side of the Bragg
peak occur where

2n
\/Xf+4</)f=7- (18)

In the limit of very weak modulation, ¢, in this equation
may be neglected, so that the positions of the minima are
determined solely by the sample thickness x and the pa-
rameter y,, which is itself determined by the wave-vectors
in equation (14 a). In other words, in the limit of very weak
modulation the angular dependence of the diffraction effi-
ciency is determined purely by “kinematical” conditions.
One can visualize the diffraction order in this kinematical
limit as arising from the interference between waves dif-
fracted by successive thin slices within the striated medi-
um. In this limit the minima in Fig. 4 would arise from
destructive interference between the diffracted waves. (A
more sophisticated view of the same process is to say that
if the striated medium in Fig. 1a has a finite thickness,
then the reciprocal lattice points in Fig, 1b should be
smeared out by convolution with the Fourier transform
of a top-hat function representing the slab of finite thick-
ness x.)

In the kinematical limit, the incident wave is assumed
to have a constant amplitude throughout the sample, and
the diffracted wave produced by each slice of the medium
1s assumed not to undergo any further diffraction.
Though this is the approach which is often used in ele-
mentary treatments of diffraction, it must be emphasized
that the kinematical theory would not be expected to
apply to well-ordered muscle fibres since the index modu-
lation is strong enough to diffract 60% of the incident
beam after a distance of about 100 pm. The angular de-
pendence of the diffraction efficiency shown in Fig. 4 is
therefore not a purely kinematical effect: the modulation
parameter ¢, not only determines the strength of the
diffraction but also affects the shape of the angular depen-
dence in Fig. 4, and in particular it determines in part the
positions of the first minima through (18).

Diffraction by a medium with curved striations

In the discussion so far we have assumed that the stria-
tions are perfectly straight, but for real muscle fibres ex-
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amined under a microscope some degree of curvature is
generally apparent (see, for instance, Huxley and Nieder-
gerke 1958). Brenner (1985) showed experimentally that
curvature of the striations has an important effect on the
diffracted intensity. The situation can be dealt with theo-
retically as follows. Consider a medium with a pattern of
curved striations as shown in Fig. 5. Here we have intro-
duced ripples into the striation pattern whilst maintain-
ing the same periodicity d in the y-direction. This picture
therefore represents a muscle fibre in which the sarcomere
length d is well defined but where there is a regular dis-
placement of myofibrils along the fibre axis. Mathemati-
cally the ripples in the striation pattern may be described
by some curve y =u(x). Hence the diclectric constant e(y)
in (2) in the presence of the ripples becomes &(y — u(x)).
The Fourier series for this function in place of (5) is

605,y) =2 &, expljh Gly—ulx)]. (19)

So the coupled-wave equation (6) in the presence of
curved strjations becomes
dE, (k5 —Kk) j@

= — E,_ ~jhG .
dx J 2k El+ zkxc h§0 &by hexp[ J M(X)(]zo)

We cannot in general find an analytical solution to this
equation even in the two-beam approximation, so we are
obliged to solve the problem by numerical methods in-
stead. It is necessary to restrict the calculation to a finite
number of beams, and for most of our numerical integra-
tions we have worked with seven beams corresponding to
[=0, +1, +2 and +3. The main interest is still in the
zeroth-order (I1=0) and first-order (/= +1) beams, since
these are readily studied experimentally, but the inclusion
of coupling to the higher-order beams makes the calcula-
tion more accurate. With seven beams, the coupled-wave
Eq. (20) produces seven differential equations for the com-
plex amplitudes E,, and for the purposes of computation
these were converted to fourteen simultaneous differential

x

equations for the real and imaginary parts of E;. These
equations were solved using a standard Runge-Kutta al-
gorithm on an IBM PS/2 Model 70 computer fitted with
an 80387 maths co-processor.

Figure 6a shows a theoretical w-scan for the first-
order diffracted beam (/=1) for the case of straight stria-
tions (that is, for =0 in Eq. 20). We have used the same
parameters as for the two-beam calculation shown in
Fig. 4 to simulate a fibre of thickness 80 um with
d=31 pm, and it can be seen from comparison with

u(x)

—_—— X
Zo

Fig. 5. A slab of cross-striated material of period d with curved
striations described by y=u(x). The Cartesian co-ordinate system
used here is the same as in Fig. 1a
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o
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(4]
w . Fig. 6a~f. Theoretical w-scans for an 80 um
s S slab with curved striations as sketched in
° ] cach inset (not to scale). a shows the predic-
g tion for straight striations and is the same as
da o Fig. 4. In b the striations are bowed by a si-
50%} (0 f) | nusoidal function u(x) containing a single
T — half wavelength of amplitude 1 pm. The effect
e of a full-wave ripple of 1 pm amplitude is
L shown in ¢, whilst for d and e the amplitudes
are reduced to 0.5 um and 0.1 pm respective-
M\Z\Z\ T ly. In £, 5 um of skew is introduced and this
ol ) P T 1 1 L 1 \ shifts the Bragg peak compared to a
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Angle of Incidence / Degrees



Fig. 6 a that the seven-beam integration produces almost
exactly the same angular dependence, especially in the
important region necar the Bragg angle. To examine the
effect of ripples in the striations, we have used a sinusoidal
displacement function of the form

u(x) = ug sin(2mwx/Ay) . (21)

Figure 6b shows the effect of a single half-wave ripple
with amplitude u,=1 pm and wavelength A,=160 pm;
this produces the bowed striation pattern shown in the
inset. The change in the angular dependence compared to
Fig. 6a is immediately apparent: the subsidiary maxima
either side of the Bragg angle are more intense, whilst the
minima are filled in, and there is an appreciable decrease
in the diffraction efficiency at the Bragg angle itself. The
effect of a full-wave ripple (4, =280 um) of the same ampli-
tude is even more dramatic, as shown in Fig. 6c. The
diffraction efficiency in this case is no longer a maximum
at the Bragg angle, but instead we find that the subsidiary
peaks on the left-hand side are greatly accentuated and
slightly shifted to the right. The original Bragg peak has
also shifted to the right, to such an extent in fact that it has
merged with one of the subsidiary maxima. This trend is
perhaps clearer for a full-wave ripple of 0.5 pm amplitude
shown in Fig. 6d, but even with an amplitude of just
0.1 pm there is an appreciable change in the subsidiary
maxima as shown in Fig. 6e.

The diffraction efficiency at any angle is clearly very
sensitive to curvature of the striations. Overall we see that
the effect of a full-wave ripple is to make the w-scans in
Fig. 6c—e markedly asymmetric about the Bragg angle,
in contrast to the almost perfectly symmetrical angular
dependence for the straight striations in Fig. 6a and the
half-wave ripple in Fig. 6b. A rather different result is
obtained if we introduce skew into the striations with a
displacement function of the form u(x) =« x. This tilts the
Bragg planes, as shown in Fig. 6f for a total skew of 5 ym
across the fibre; as one would expect, the Bragg peak is
simply shifted relative to that in Fig. 6a since the Bragg
condition in (16) is now satisfied when the incident beam
makes an ange wy to the planes themselves rather than to
the normal.

Diffraction by a cylindrical fibre

Real muscle fibres are not in fact plane slabs but are more
or less cylindrical. Indeed, refraction by the cylindrical
surface of a fibre was demonstrated experimentally by
Marikhin and Myasnikova (1970), and its effect on the
diffraction pattern needs to be considered. However, to
solve the coupled-wave equation in a cylindrical geome-
try would be rather difficult, and we adopt instead a sim-
pler approach based on ray optics as illustrated in Fig. 7.
This figure shows a cross-section of a cylindrical fibre of
radius r together with the path of a zeroth-order light ray
projected onto the same plane. The wave-vector of the
light ray will in general also possess a component K
normal to this plane and parallel to the fibre axis given by

2w .
K, = 771 sinm , (22)
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Fig. 7. Ray diagram showing refraction by a cylindrical fibre of
radius r projected onto the xz diametrical plane. A ray with wave-
vector component K__ in this plane is incident at point P a height
s above the fibre axis O and makes an angle of incidence w, with the
normal. The refracted ray of wavevector &, inside the fibre makes an
angle §, with normal and leaves the fibre at point @ having tra-
versed a thickness x given by (27). The Cartesian co-ordinate system
used to analyse this problem is also shown

where w is the angle of incidence projected onto the hor-
izontal plane containing the fibre axis and the incident
beam, as in the preceding theory. K is measured parallel
to the refracting surfaces of the fibre and it is therefore
conserved during refraction. Figure 7 shows the refraction
with occurs in the xz-plane perpendicular to the fibre axis.
We choose the x-axis parallel to PQ, which is the path of
light beam inside the fibre projected onto the xz-plane.
Snell’s law for refraction in this plane at point P may be
written as

K sinw, =k, sinf, , (23)

where w, is the angle of incidence in the xz-plane, 6, is the
corresponding angle of refraction measured inside the
fibre, and K, is the wave-vector of the incident beam in
the xz-plane inside the saline of refractive index n, and is
given by
2m 2 202 \1/2

K, = w (ny — sin“w)™'“. (24
Note that the wave-vector component k_ inside the fibre
is still given by (8).

The thickness of the fibre traversed by the ray shown
in Fig. 7 1s
x=2rcosf, . (25)
It follows from the geometry that

. N
Sinw, = ; , (26)

where s is the height of the incident ray above the fibre
axis 0 as shown in the figure. Making use of (22)—(26)
together with (8), we find that the effective thickness of the
fibre for this ray is

5% (n¢ — sin’w) V2
)

=2r|l— -
x=ar [ nir?(n? —sin’e 27)
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Fig. 8a, b. Theoretical w-scans showing the first-order diffraction
efficiency for a cylindrical fibre in the two-beam approximation.
a corresponds to a broad beam described by (28b). b shows the be-
haviour for a narrow beam of 50 um diameter, governed by (28c¢).
The fibre was assumed to be immersed in a glycerol-saline solution
of refractive index n, =1.405, and other parameters were as for Figs.
3 and 4

The ray-optics approach is valid provided that the
fibre radius » is much greater than the light wavelength A.
In that case, the incident light beam can be split into ray
bundles of thickness ds, and the fibre thickness presented
to each ray bundle is determined through (27) by the
incident height s. The effect of striations in this model will
be to set up a coupled-wave system for each ray bundie.
If the whole fibre diameter is illuminated, then a fraction
ds/2r of the incident light lies in a ray bundle of thickness
ds, and the contribution of this bundle to the first-order
diffraction efficiency is

d
dFlz——S—fl(x,a)), (283)
2r
which leads to the differential equation
af, _ L(xo) (28b)
ds 2r

Note that the right-hand side of this equation depends
implicitly on the ray height s by virtue of (27).

The simplest approach to integrating (28 b) is to treat
the coupled waves in the two-beam approximation, in
which case f; (x,) is given by (15). We have performed
the integration numerically using the Runge-Kutta al-
gorithm on our PS/2 computer, and the calculated first-
order diffraction efficiency F, for a cylindrical fibre of

Fig. 9. Schematic diagram showing a beam of width ¥ being fo-
cussed on to a muscle fibre by a lens of focal-length f. The nominal
angle of incidence is w as before, but rays in the focussed beam are
actually incident at angles from @ —o to @ +«. This produces some
degree of angular averaging as discussed in the text

diameter 80 um is shown in Fig 8 a. This figure should be
compared with Fig. 4, which shows the results of a two-
beam calculation for a plane slab of thickness 80 pm. The
effects of refraction by the cylindrical fibre are apparent in
Fig. 8a: the minima in Fig. 4 are now partly filled in; the
subsidiary maxima are slightly displaced; and the diffrac-
tion efficiency at the Bragg angle is somewhat reduced.
Refraction effects are reduced if we illuminate the mus-
cle fibre with a narrow beam, so that most of the rays in
the beam pass through approximately the same fibre
thickness. Suppose that circular beam of width w<2r is
incident of the fibre. This beam should be divided into
horizontal strips of width ds to define the different ray
bundles, and allowing for the circular cross-section of the
beam Eq. (28 b) becomes
dF 8

*JS— = 'ﬂ:—wz (W2/4—SZ)1/2 fl(x,a)) . (280)
We have integrated this equation numerically for a beam
width of 50 pm and a fibre diameter of 80 um, and the
resulting w-scan is shown in Fig. 8 b. This bears a much
closer similarity to Fig. 4: the minima are no longer filled
in and the diffraction efficiency at the Bragg angle is hard-
ly reduced at all, although the subsidiary maxima are still
slightly shifted. Hence by concentrating the incident
beam into somewhat less than the fibre diameter we may
reduce the effects of refraction.

Diffraction of a focussed laser beam

We need to use a lens to focus the incident beam down to
a diffraction-limited spot on the muscle fibre. Concentrat-
ing the beam in this way reduces the effect of refraction by
the cylindrical fibre, and there are also in fact some im-
portant practical advantages which are discussed in the
following section. However, one important disadvantage
of using a focussed beam must be addressed here. Fig-
ure 9 shows a ray diagram where the incident beam of
width Wis focussed by a lens of focal length f. The nom-
inal angle of incidence is w as before, but it is clear that the
rays converging on the focal point are actually incident
over a range of angles from w-—a to w+«, where « is the



half-angle subtended by the focussed beam at the fibre
and is given by

x=tan"L(W/2f). (29)

The lens therefore introduces some degree of angular av-
eraging with respect to w, and if the angular spread 2« is
too large then the characteristic features of the w-scans
shown in Figs. 4, 6 and 8 will be lost.

In order to assess the effect of angular averaging on
our experimental results, we have developed a somewhat
simplified mathematical model. In the first place, we treat
this as a two-dimensional problem and consider only the
effect of focussing in the scattering plane itself. Secondly,
we neglect any complications arising from diffraction by
the lens and treat the focussed beam as consisting of well
defined ray bundles (a valid approximation provided that
AW < W /f). Thirdly, we treat diffraction by the fibre us-
ing the two-beam approximation as discussed previously.
In that case, the effective first-order diffraction efficiency
for the focussed beam is

Fio)= [ 10)f,(xo+6)do, (30)

where f; (x,w+6) defined in (15) is the first-order diffrac-
tion efficiency in the two-beam approximation for a medi-
um of thickness x at angle of incidence w+6, and 1(6)dé
is the fraction of the incident intensity contained in the
ray bundle focussed into the angular interval from 6 to
#+ df. We make the further symplifying assumption that
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Fig. 10. Theoretical first-order w-scan for a beam of width W=1 mm
focussed by a lens with focal length f=40 mm. The other parame-
ters are the same as for Fig. 4
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the laser-beam intensity before the lens is spread uniform-
ly over the beam with W, in which case
1(6) = 2l sec?0 . (31)
124

We have evaluated the integral in (30) using (15) and
(31) by means of the Runge-Kutta algorithm on our com-
puter. A theoretical w-scan is shown in Fig. 10 for a beam
of width 1 mm focussed by a lens of focal-length 40 mm
onto a plane slab of thickness 80 um. Comparison with
the corresponding w-scan for an unfocussed beam in
Fig. 4 shows that the diffraction efficiency at the Bragg
angle is reduced from 43% to 40% and the subsidiary
minima are partly filled in. The effects of angular averag-
ing in this case are therefore modest because the angular
spread of the incident beam (about 1.5°) is somewhat
smaller than the angular width of the peak in Fig. 4. How-
ever, use of a lens with shorter focal would increase the
effect of angular averaging. In practice it is therefore im-
portant to choose a lens whose focal length is only just
short enough to produce a focal spot smaller than the
fibre diameter.

Materials and methods
Fibre preparation

The muscle fibres used in this investigation were dissected
from glycerinated rabbit psoas muscle, which was pre-
pared by following the same procedure as Berovic et al.
(1989). Fibres were stored at—20°C for up to three
months in a glycerinating solution consisting of 50%
glycerol and 50% relaxing solution containing 3 mM
ATP (Brenner 1983). We believe that the presence of ATP
in the glycerinating solution helps to preserve the sarcom-
ere order by preventing rigor. Fibres were carefully dis-
sected in this solution without either twisting them or
bending them unnecessarily. All of the fibres which we
used were crystal clear when viewed under a dissecting
microscope and they displayed strong irridescence in
white light. Single fibres were mounted inside an optical
cell (Berovic et al. 1989), which was filled with glycerinat-
ing solution. We found that fibres mounted in this solu-
tion retained their order better than those in pure relaxing
solution.

Fig. 11. Schematic diagram showing
the optical apparatus used to record
w-scans from single muscle fibres. The
angle of rotation w is also shown, but
note that the fibre is actually slightly
offset from the centre of rotation to
reduce the excursion of the laser spot.
ND - neutral-density filter; L —focussing
lens; SC —sample cell; F — muscle fibre;
D,-D,—photodiodes
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Optical apparatus and procedure

The optical apparatus used for our diffraction measure-
ments is shown in Fig. 11. The light source was a He-Ne
laser (Spectra-Physics Model 120S) producing approxi-
mately 8 mW of vertically polarized light of wavelength
632.8 nm. The intensity of the light falling on the sample
could be reduced with a neutral-density filter, and a lens
was used for measurements with a focussed beam. Four
large-area (1 cm?) photodiodes (RS Components Ltd.,
Corby, Northants., UK) were used to monitor the intensi-
ties of the diffraction orders. Each photodiode signal

(nominally 0.35 mA/mW) was amplified by a current-to-'

voltage converter to give a nominal output sensitivity of
1 V/mW. The output signals were recorded using four
calibrated analogue-input channels of a BBC Model B
microcomputer (Acorn Computers Ltd., Cambridge, UK)
fitted with an ADC band-gap reference diode. The com-
puter was also used to control a stepper motor, which
rotated the sample cell about a vertical axis to vary the
angle of incidence w. With this equipment, “w-scans” for
up to four diffraction orders could be recorded simulta-
neously.

The optical quality of the muscle fibres was of prime
importance, so we first examined the diffraction pattern
for each fibre when it was illuminated with an unfocussed
laser beam. Well-ordered fibres produced a series of sharp
diffraction lines separated by a weak background of dif-
fuse scattering, indicating that the sarcomere length d was
well defined. (Occasionally what appeared to be a single
fibre under the dissecting microscope turned out to be
two closely associated fibres, whose diffraction lines were
doublets.) The sarcomere length d was determined at this
stage by measuring the separation of the first-order dif-
fraction lines with a typical accuracy of 1%. The fibre
diameter was measured using a microscope and graticule
after the fibre was mounted in the sample cell.

The diffraction lines produced by muscle fibres are
superficially like the “layer lines” produced by a one-
dimensional periodic lattice. However, for a fibre with
three-dimensional order these lines are in fact an artefact
due to refraction by the cylindrical fibre (Marikhin and
Myasnikova 1970). Close inspection shows that the inten-
sity in the diffraction lines is concentrated along the me-
ridian, and when a focussed laser beam is used a series of
meridional diffraction spots is obtained instead of the
diffraction lines. The meridional spots can also be used to
test for skew in the fibre. In the absence of skew the
meridian is horizontal, and at normal incidence the inten-
sities of right-hand and left-hand diffraction order (+/in
the preceding theory) should be equal (assuming no cur-
vature in the striations). The effect of skew may be either
to tilt the meridian relative to the horizontal or to pro-
duce left-right asymmetry in the diffracted intensities at
normal incidence. Most of our measurements were there-
fore performed on fibres whose meridian was approxi-
mately horizontal and which produced a reasonably sym-
metrical diffraction pattern at normal incidence.

The effect of refraction on an w-scan was discussed
above, and the use of a focussed beam not only reduces

the refraction effect but also has two important practical
advantages:

1) All of the incident light hits the fibre and the total
intensity of cach diffraction spot can be recorded directly
using a photodiode without the need for an imaging lens.
Hence absolute values of diffraction efficiencies can read-
ily be determined.

2) Only a very short segment (~50 pm) of the muscle
fibre is illuminated by a focussed beam. As was shown by
Brenner (1985), it is much more feasible to find well-
ordered striations in such a short segment than in one
1 mm or so long, which would be necessary for an unfo-
cussed beam.

In the experiment, the photodiodes were placed about
12.5 cm away from the focal point so as to intercept the
meridional spots of diameter about 3 mm. Each diode
was positioned so that when the Bragg condition for its
order was satisfied the spot fell on the centre of the diode.
As the cell was rotated the angle of diffraction 6, for order
[ varied according to the grating formula,

d(sinw + sin (6,—w)) = 14 (32)

Fixing the position of each photodiode therefore meant
that for some extreme angles of incidence the diffraction
spot missed the diode, but by centring the diffraction spot
at the Bragg angle we ensured that each diode gave a true
reading of the diffracted intensity in the most important
region either side of the Bragg peak. Any artefacts due to
diode positioning were therefore confined to incident an-
gles well away from the Bragg angle, where the weak
diffracted intenstiy is in any case of little interest.

We believe that the use of a focussed laser beam was
very important in obtaining reliable quantitative diffrac-
tion data. Note, however, that this procedure does pos-
sess two possible disadvantages:

1) When the optical cell is rotated away from normal
incidence, refraction by the fluid in the parallel-sided cell
displaces the beam so that it no longer passes through the
centre of rotation. This causes the laser spot to scan along
the fibre and may therefore produce artefacts in an w-scan
if the fibre order varies along its length. To counteract this
effect, we offset the fibre from the centre of rotation by
about 1 mm along the beam direction at normal inci-
dence. When the cell was rotated the displacement due to
the offset almost exactly cancelled that due to refraction,
and the excursion of the laser spot along the fibre during
an w-scan was thus limited to less than + 100 pm.

2) As discussed in the previous section, the use of a fo-
cussed laser beam introduces a range of incident angles by
virtue of the cone of focussed rays. Hence an w-scan ob-
tained with a focussed beam incorporates some degree of
angular averaging because the angle of incidence o is no
longer sharply defined. In our experiments we used a lens
of focal length 40 mm to produce a focal spot of about
50 pm diameter on the muscle fibre. A defocussed spot of
about 3 cm diameter was found on a screen placed 99 cm
behind the sample cell, and this implies that the beam
divergence was about 1.7°. This is probably an overesti-
mate of the effective beam divergence because of the
Gaussian profile of the laser beam.



Results and discussion

We have obtained results from several muscle fibres
which illustrate quite well the coupled-wave effects de-
scribed in the theoretical section. Some of our best results
are shown in Fig. 12a for a fibre of thickness 71 pm and
sarcomere length 3.04 um. Curve (i) is an -scan for the
zeroth-order beam, which passes straight through the fi-
bre. The intensity of this order is significantly reduced by
diffraction in the region of the first-order Bragg angle on
either side of normal incidence. Curves (ii) and (iii) show
the signals from the photodiodes monitoring the two
first-order diffraction spots (I=+1 in the theory); the
light lost from the incident beam does indeed appear in
the diffraction orders, and the peak first-order diffraction
efficiency in this case is 34%. At higher angles of incidence
some of the incident beam is diffracted into the third
order, shown in curve (iv), whilst the second-order dif-
fracted intensity is virtually zero for all angles of incidence
at the sarcomere length of 3.04 um used here.

Figure 12b presents the theoretical w-scans corre-
sponding to Fig. 12a calculated using the seven-beam
coupled-wave approximation for a medium with straight
striations. Curve (i) illustrates the behaviour of the zeroth-
order beam, whilst (if) and (iii) show the diffraction effi-
ciencies for the first-order diffraction spots. The peak
first-order diffraction efficiency is predicted to be 36%,
which is in remarkably good agreement with the experi-
mental value. Furthermore, the theoretical second-order
diffraction efficiency almost vanishes at the sarcomere
length of 3.04 um, and this is also borne out by experi-
ment. On the other hand, the comparison of theory with
experiment for the third order, curve (iv), is much less
satisfactory: whereas the theoretical peak in Fig. 12b is
very narrow with a maximum diffraction efficiency of
53% at the third-order Bragg angle, the experimental
w-scan in Fig. 12a shows a much broader and rather
weaker peak with a maximum of only 15%.

Much better agreement between theory and experi-
ment is obtained once we introduce a small amount of
curvature into the striation pattern. Close examination of
the experimental first-order peaks in Fig. 12a reveals two
of the characteristic effects of curvature which were illus-
trated in the theoretical w-scans of Fig. 6. First of all, the
minima either side of the Bragg peak are filled in, which
may be due to a bow in the striation pattern as illustrated
in Fig. 6b. Secondly, there is a distinct asymmetry in the
heights of the subsidiary maxima similar to that caused
by the full-wave ripple in Fig. 6¢. We have therefore re-
peated the theoretical seven-beam calculation incorpo-
rating both a bow (of amplitude 0.75 um) and a ripple (of
amplitude 0.15 pum) into the striation pattern. The result-
ing w-scans in the presence of these curved striations are
shown in Fig. 12¢. The similarity of the first-order peaks
to the experimental data in Fig. 12 a is most striking: both
the asymmetry and the depth of modulation of the sub-
sidiary maxima are now well reproduced. As one might
expect, the introduction of a small amount of curvature
into the striations has a much greater effect on the third-
order peak, which is considerably broadened and reduced
in intensity. The shape of this peak is very sensitive to the
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Fig. 12a—c. Experimental w-scans for a fibre of thickness 71 pm
with sarcomere length 3.04 pm are shown in a. Curve (i) shows the
transmission efficiency for the zeroth-order beam. Curves (ii) and
(iii) show the first-order diffraction efficiencies (/= +1 in the theory),
which reach 34% at the Bragg angle. Curve (iv) shows the diffraction
efficiency for the third order. Note that the second-order diffraction
efficiency is virtually zero at the sarcomere length used here. b shows
the theoretical w-scans corresponding to a calculated using the
seven-beam approximation for a medium with perfectly siraight
striations. The peak diffraction efficiencies are 36% for the first
order and 53% for the third order. ¢ shows the corresponding
theoretical w-scans for a medium with curved striations: a bow of
amplitude 0.75 pm together with a full-wave ripple of amplitude
0.15 pm. Compared to b the shape of the first-order peaks (i) and
(i#i) is much better reproduced, and the irregular broadening of the
third-order peak (iv) is similar to the experimental data in a

precise function used to represent the curvature of the
striations, so Fig. 12¢ should only be regarded as being
suggestive of the type of curvature which may have been
present in the actual muscle fibre which produced
Fig. 12a. The overall agreement between theory and ex-
periment is nonetheless very good, and lends strong sup-
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Fig. 13a—c. Experimental first order w-scans for a fibre of thickness
58 um with sarcomere length 2.45 pm are shown in a. The maximum
diffraction efficiency is 24%. b shows the corresponding theoretical
w-scans calculated using the seven-beam approximation for stria-
tions containing a bow of amplitude 0.35 pm and with 1.6 pm of
skew. Experimental first-order w-scans for the same fibre but using
an unfocussed laser beam, are shown in ¢

port to the coupled-wave theory for optical diffraction
from single muscle fibres.

Figure 13a shows the experimental w-scans for the
two first-order diffraction spots for a fibre of thickness
58 um with sarcomere length 2.45 pm. The peaks here are
more symmetrical than those in Fig. 12a, but there is still
a significant filling in of the minima, perhaps due to some
bowing of the striations coupled with a certain amount of
angular averaging from the focussed beam. There is also
some evidence of skew for this fibre, as both peaks are
displaced from the theoretical Bragg angle (Riidel and
Zite-Ferenczy 1979; Gilliar et al. 1984). Theoretical peaks
for slightly bowed striations (amplitude 0.35 um) with
1.6 um of skew were calculated using the seven-beam the-

ory and are shown in Fig. 13b. The maximum theoretical
diffraction efficiency is 30% compared to the observed
value of 24%. Experimental results for the same fibre
using an unfocussed laser beam are shown in Fig. 13¢. The
peaks are now much broader, and the subsidiary maxima
are reduced to barely perceptible bumps. The broadening
of the Bragg peak itself is far more severe than could be
accounted for by refraction due to the cylindrical fibre (cf.
Fig. 8). This may be because the curvature of the stria-
tions varies along the millimetre length of fibre illuminat-
ed by the unfocussed laser beam (Brenner 1985). The re-
sultant m-scan is then the superposition of the w-scans
for segments with different curvature, which causes the
sharp angular dependence for the single 50 pm segment in
Fig.13a to be lost. Note that the vertical scale for
Fig. 13 ¢ does not reflect the true diffraction efficiency of
the fibre, as only part of the incident beam hit the fibre
and only part of the diffraction line was intercepted by the
photodiode. Comparison of Fig. 13a with Fig. 13 ¢ there-
fore clearly demonstrates the practical advantages of us-
ing a focussed beam for our diffraction measurements.

In our experience only a small percentage of muscle
fibres produce w-scans as nearly ideal as Fig. 12a or
Fig. 13 a. The sensitivity of the w-scans to even the slight-
est curvature of the striations is a major practical difficul-
ty in the study of optical diffraction by muscle fibres.
Furthermore, changes in the curvature of the striations
may contribute to intensity changes in other optical ex-
periments. One example is the investigation of transpar-
ency changes for whole muscle by Hill (1953a, b) and
Flitney (1975) together with the more recent work on
single fibres by Leung and Cheung (1988). These workers
observed changes in muscle transparency and diffracted
intensity on stretching or activating muscle. Our work
suggests that such intensity changes might be produced
by changes in the striation pattern: to verify this, one
would need record w-scans before and after the physio-
logical state of the muscle is altered.

Our work may also be relevant to studies of changes in
the birefringence of muscle (Haskell et al. 1989, Chen et al.
1989, Peckham and Irving 1989): since the refractive in-
dex is different for the E- and O-rays their intensities will
be affected differently by changes in the curvature of the
striations. More theoretical and experimental work is
needed to clarify this point.

Conclusions

We have presented a detailed theoretical model for opti-
cal diffraction by well-ordered muscle fibres based on
Kogelnik’s coupled-wave theory. Experimental studies of
diffraction of a focussed laser beam have yielded first-
order diffraction efficiencies as high as 34%, in good
agreement with the theoretical prediction. This demon-
strates that coupled-wave effects are indeed important in
optical diffraction by well-ordered single muscle fibres.
The theoretical model shows that the diffraction efficien-
cy is extremely sensitive to any curvature in the striation
pattern, and this is borne out by our experimental results,
which exhibit the characteristic features of bows and rip-



ples in the striations. This observation has wider implica-
tions for the interpretation of other optical experiments in
muscle physiology, such as changes in muscle transparen-
cy and birefringence.
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