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Abstract. We have studied the diffraction of a focussed 
laser beam by single fibres of glycerinated rabbit psoas 
muscle as a function of the angle of incidence. Diffraction 
efficiencies as high as 34% were observed at the first- 
order Bragg angle, indicative of well-ordered striated fi- 
bres with a strong periodic modulation of the refractive 
index. A theory is presented to account for our observa- 
tions based upon the coupled-wave model developed by 
Kogelnik (1967) and Magnusson and Gaylord (1977) for 
the description of thick phase gratings in holography. We 
have solved the coupled-wave equations on a computer 
using a realistic index modulation taken from the mea- 
surements of Huxley and Hanson (1957). Comparison of 
theory with experiment shows that coupled-wave effects 
are indeed present in well-ordered muscle fibres, and the 
observed diffraction efficiency is in quite good agreement 
with what would be expected theoretically. Most impor- 
tantly, the computer model allows us to calculate the 
diffraction efficiency for curved striations, which are ob- 
served for real muscle fibres under a microscope. The 
sensitivity of the diffraction efficiency to curvature of the 
striations may have implications for the interpretation of 
other optical experiments on muscle. We also consider the 
effects on our measurements of the focussing lens and 
refraction by the cylindrical fibre. 
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Introduction 

Optical diffraction by striated muscle was first reported 
by Ranvier (1874) over a century ago. He suggested that 
the regular striation pattern, which had previously been 
described by Bowman (1840), acted like a plane diffrac- 
tion grating with a grating element equal to the sarcomere 
length. This simple view of diffraction by muscle endured 
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for many years, although Sandow (1936) demonstrated 
that the relative intensities of the diffraction orders from 
whole muscle depended on the muscle thickness, and he 
interpreted this as evidence for multiple diffraction by 
successive layers of muscle fibres inside the muscle. Opti- 
cal diffraction by single muscle fibres was first investigat- 
ed by Buchthal and Knappeis (1940), and somewhat later 
the use of the diffraction pattern as a sarcomere-length 
gauge was developed by Blinks (1965) and by Cleworth 
and Edman (1969), the latter authors using a laser. How- 
ever, in a length gauge it is only the positions of the diffrac- 
tion orders which are important, and these are in fact 
correctly given by the simple diffraction-grating formula 
(Cleworth and Edman 1969) irrespective of the fibre 
thickness. It is when we consider the intensities of the 
diffraction orders that a more sophisticated theory is re- 
quired; this, together with new experimental measure- 
ments, forms the subject of the present paper. 

The effect on the diffraction pattern of the three-di- 
mensional structure of muscle fibres themselves was ne- 
glected until relatively recently. Kawai and Kuntz (1973) 
investigated diffraction by single fibres but regarded them 
as one-dimensional gratings exhibiting negligible multi- 
ple diffraction. The three-dimensional structure of muscle 
fibres was considered by Fujime and Yoshino (1978) in 
their theoretical treatment of diffraction, but the most 
important breakthrough was made by Rfidel and Zite- 
Ferenczy (1979), who demonstrated experimentally that 
the intensity of a diffraction peak from a single muscle 
fibre is a maximum when the Bragg condition is satisfied. 
On the basis of this, one might regard a muscle fibre as a 
three-dimensional sarcomere lattice capable of producing 
optical Bragg diffraction analogous to the Bragg diffrac- 
tion of X-rays by crystals. This analogy is, however, only 
partly true. In X-ray crystallography, Bragg diffraction is 
usually only observed at, or very near to, the Bragg angle, 
whilst in muscle the diffraction peaks are present at any 
angle of incidence (including normal incidence), just as for 
a diffraction grating. Therefore, although Bragg effects do 
indeed occur for single muscle fibres, it was recognised by 
Rfidel and Zite-Ferenczy (1980) and also by Baskin et al. 
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Fig. la, b. A slab of cross-striated 
material of period d is shown in 
a together with diffraction order 
for l= 0, _+ 1 and 2 arising from 
an incident beam of wavevector 
K 0 at angle of incidence co. The 
Cartesian co-ordinate system used 
in the theoretical analysis is also 
shown. Coupled waves with 
wavevectors ko, kl, kz, etc. given 
by (3) are produced inside the 
slab. These are shown in 
b together with the reciprocal lat- 
tice vector G 

(1981) that a quite sophisticated theory is required to 
account for the observed intensities of the diffraction 
orders. These authors realised that optical diffraction by 
a muscle fibre is very similar to the diffraction of light by 
a thick holographic phase grating, for which a theory had 
been developed by Kogelnik (1967) and was later extend- 
ed by Magnusson and Gaylord (1977). Kogelnik's theory 
resolves the apparent contradiction between the Bragg 
and diffraction-grating viewpoints by considering in de- 
tail the propagation of light through a striated medium. 

A rather different theoretical approach to this problem 
has recently been published by Huxley (1990). In his the- 
ory the striations are taken to act as optical waveguides. 
This is a perfectly correct viewpoint, but the theory has 
several practical disadvantages compared to the holo- 
graphic approach. In the first place, the striations are 
taken to consist of uniform A- and/-bands,  in contrast to 
the more complex refractive-index modulation which was 
determined experimentally by Huxley and Hanson (1957) 
for rabbit psoas muscle. Secondly, the waveguide ap- 
proach becomes cumbersome away from normal inci- 
dence owing to the number of boundary conditions which 
have to be satisfied. Thirdly, as recognised by Huxley 
himself, the waveguide approach cannot readily take ac- 
count of the curvature of the striation pattern, which was 
shown by Brenner (1985) to affect the diffracted intensity. 

In this paper we show how Kogelnik's holographic 
theory can be applied to understand optical diffraction by 
well-ordered muscle fibres possessing regular cross-stria- 
tions, even though these may be curved. The mathemati- 
cal details are explained fully in the following section, but 
readers who wish to omit the mathematics may be able to 
understand the essential points by referring to Figs. 1 - 10. 
The remainder of the paper describes our quantitaive ex- 
perimental investigation of optical diffraction by single 
muscle fibres. We have taken great care to eliminate opti- 
cal artefacts from the experiment, and the necessary pre- 
cautions are described in some detail. The results which 
we have obtained provide strong support for our theoret- 
ical approach. We feel that this is an important contribu- 
tion not because the optical properties of muscle are 
themselves of direct physiological importance, but rather 

because optical techniques have been widely used for 
many years in phsysiological experiments without the 
proper physical understanding which is necessary for 
their correct interpretation. 

Theory of diffraction by well-ordered muscle fibres 

Coupled-wave theory of diffraction by a striated medium 

Consider first the diffraction of light by an idealized slab 
of cross-striated material as shown in Fig. 1 a. Light of 
wave-vector Ko is incident at angle co, and the striations 
of period d produce diffraction orders, some of which are 
shown labelled 0, _ 1, and 2. Following Kogelnik (1967), 
we wish to calculate the intensities of the diffraction 
orders by solving the wave equation for light propagation 
inside the striated medium. We choose a Cartesian co- 
ordinate system as shown, where x is normal to the slab, 
y is perpendicular to the striations, and z is perpendicular 
to the scattering plane. The light is taken to be polarized 
along z, parallel to the striations (so-called//-mode po- 
larization), so that in complex notation the z-component 
of the electric field at time t may be written as 

E z (x, y, t) = E (x, y) exp ( --j (2 t), (1) 

where E(x,y) is the complex electric-field amplitude, j is 
x / -  1, and (2 is the angular frequency of the light. The 
spatial part of the wave equation for Ez is then 

~2 E ~2 E Q2 e(y) 
~X~-~ + --~y2 -/- c~--~ E = 0 , (2) 

where c is the speed of light in vacuo, and e(y) is the 
optical dielectric constant of the striated medium; e is a 
function of y alone because the striations are assumed to 
lie in the xz-plane. To gain some physical insight into this 
problem it is instructive to consider the wave-vector dia- 
gram shown in Fig. lb. In the absence of diffraction, the 
incident wave, whose wave-vector is K0 in the external 
medium, would simply be refracted into the zeroth-order 
wave of wave-vector k o inside the slab. In the presence of 
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striations, however, additional diffracted waves are pro- 
duced inside the slab with wave-vectors given by 

kl = ko + IG , (3) 

where I is an integer, and G is the reciprocal-lattice vector 
of magnitude 2 n/d directed perpendicular to the stria- 
tions. As the light propagates through the medium, each 
diffraction order is itself diffracted by the striations, so 
that a set of coupled waves exists inside the slab, This is in 
essence what Sandow (1936) recognised as multiple dif- 
fraction in a whole muscle containing many muscle fibres, 
but, as we shall show, coupled-wave effects are in fact 
significant even for a single fibre. 

The amplitude of each coupled wave changes as the 
light propagates through the slab. To solve the wave Eq. 
(2), we decompose E (x, y) into coupled waves inside the 
slab as 

E (x, y) = Z E~(x) exp (j k I r) ,  (4) 
l 

where E~(x) is the amplitude of the lth coupled wave at a 
distance x inside the slab, and r is the position vector of 
point (x, y). The dielectric constant arising from the peri- 
odic cross-striations may also be expanded in a Fourier 
series as 

e(y) = E Sh exp(jh Gy),  (5) 
h 

where h is an integer labelling the Fourier coefficient s h. 
Substituting for E(x ,y )  and s(y) in (2) from (4) and (5), 
neglecting d 2 E J d x  2 on the assumption that E~(x) is slow- 
ly varying, we find that 

dE, (ko 2 -  k~) E , +  jr22 Z ehE,-h, (6) 
d ~  - j  2k  x 2kxc  2 h*o 

where kx is the x-component  of the wave-vector common 
to all of the coupled waves inside the slab. Equation (6) is 
the coupled-wave equation essentially as derived by Mag- 
nusson and Gaylord (1977) following Kogelnik (1967). It 
is the second term on the RHS of this equation which is 
responsible for coupling E z to other waves El_ h whenever 
the Fourier component  s h is non-zero. The first term on 
the RHS changes the phase of Ez, since in general k~ # k o 
inside the slab, as can be seen from Fig. 1 b. Taking ac- 
count of Snell's law together with (3), we find that 

4 ~  2 
k~ 2 = k~ 2 + ~ -  (sinco- 12/d) 2 , (7) 

and 

2nn0 - 2 2 
k : , -  ~ (1--sin cO/no) , (8) z 

where n o is the average refractive index of the slab, and 
both the angle of incidence co and the light wavelength 2 
are measured in vacuo. 

The refractive-index modulation in muscle 

The refractive-index modulation in single myofibrils from 
glycerinated rabbit psoas muscle was studied many years 
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Fig. 2 a - c .  The structure of a single sarcomere of length d is shown 
schematically in a. The principal components are A-filaments of 
length a, /-filaments of length b, and Z-lines of thickness z. The 
overall index modulation An(y) is sketched in b, and the individual 
contributions, An A, An~ and Anz, are drawn in c (not to scale) 

ago by Huxley and Hanson (1957) using interference mi- 
croscopy. They found that the main contributions arise 
from the A- and/-f i laments  together with the Z-lines as 
shown schematically for a single sarcomere of length d in 
Fig. 2a. The index modulation An(y) itself is drawn in 
Fig. 2b. It is rather more complex than the uniform 
A- and / -bands  considered by Huxley (1990) in his wave- 
guide approach to optical diffraction. The Fourier com- 
ponents of the index modulation may be determined us- 
ing the equation 

] +i/z A n h = ~ -d12 A n (y) exp ( - j  h Gy) d y .  (9) 

An (y) is formed from the three individual contributions as 
sketched in Fig. 2c: An A from the A-filaments, An B from 
the/-filaments, and Anz from the Z-lines. 

The dielectric constant a is related to refractive index 
n by 

e = n 2 . (10) 

Provided that the index modulation An(y) is small com- 
pared to the average refractive index no, we can write the 
Fourier components of the dielectric constant (for h # 0) 
as 

Sh = 2noAnh.  (11) 
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Analysing the three contributions to the index modula- 
tion separately leads to the following Fourier compo- 
nents: 

AnAh--  A hlr, n'l sin (h rc a/d) , (12 a) 

where a is the length of the A-filaments; 

- A nB sin [h n(d - b)/d],  (12 b) AnBk -- h 

where b is the length of the/-filaments; and 

z An z cos (Tr h), (12 c) Anzh - d 

where z, the width of the Z-line, is assumed to be much 
smaller than the sarcomere length d. 

The absolute contribution of the muscle proteins to 
the refractive index was investigated by Huxley and 
Niedergerke (1958) for fresh single fibres of frog semi- 
tendinosus muscle. They found that the refractive index of 
the A-band was 0.0128 greater than that of the/-band, 
corresponding to a difference in protein concentration of 
7.1 g/100 ml (assuming that 1 g/100 ml of protein in- 
creases the refractive index by 0.0018). This is in quite 
good agreement with what one would estimate for the 
myosin concentration based on the known structure of 
the thick filaments: taking the filament spacing to be 
44.1 +0.2nm (Brenner and Yu 1985), and assuming 6 
myosins per 42.9 nm with a molecular weight of(4.8 + 0.2) 
x 105 daltons, we estimate the myosin concentration to 
be 6.62+_0.28 g/100 ml. However, as we describe later in 
this paper, our actual measurements were performed on 
glycerinated muscle fibres mounted in a solution of 50% 
glycerol and 50% relaxing solution. We have determined 
the refractive-index increment for 1 g/100 ml of protein in 
this medium to be 0.00111 +0.00005 using an Abb~ re- 
fractometer. The contribution of myosin to the refractive 
index is therefore estimated to be 0.0074 +_ 0.0004, and this 
is taken to be the magnitude of the index modulation An a 
in Fig. 2b and Eq. (12a). 

To find the Fourier components of the index modu- 
lation we must include the relative weightings of the dif- 
ferent contributions as established by Huxley and Han- 
son (1957). They showed that A n A = 2 A n B ,  and taking 
a=  1.5 gm and b =2 gm they estimated that 54.5% of the 
muscle protein was in the A-filaments, 36.4% in the/-fil- 
aments, and 6% in the Z-lines. Since the contribution to 
refractive index is proportional to the protein concentra- 
tion, we estimate that zA nz = (6/54.5)aA n a. Note that we 
have omitted any contribution from Huxley and Han- 
son's "S-filaments" joining the ends of the/-filaments and 
accounting for about 3.1% of the muscle protein. Recent 
work by Wang and Wright (1988) seems to show that the 
protein t i t in connects the Z-lines to the M-lines at the 
centre of the sarcomere, but if this protein is assumed to 
be fairly evenly distributed then it will not contribute 
significantly to the index modulation. 

The  two-beam approx imat ion  

A very useful approximate solution to the coupled-wave 
equation can be obtained by restricting the analysis to the 
interaction between the zeroth-order incident beam and 
the first-order diffracted beam. In this two-beam approx- 
imation the coupled-wave Eq. (6) reduces to a simple pair 
of differential equations: 

dEo 
d x  - JcP~ E I  ' (13a) 

and 

dE1 
d x  

- j z l E I + j c p l E o ,  (13b) 

where 

7~1 - 2 k~ (14a) 

and 

4 ~Z2 no An l  
(Pl - -  2 2 k x  (14b) 

The coefficients Zl and q0~ therefore depend on the angle 
of incidence co byvirtue of equations (7) and (8) for k z and 
k x • 

It is straightforward to solve the coupled Eqs. (13a) 
and (13b) inside the striated medium subject to the 
boundary condition E~ = 0 at x = 0, and thus we find that 
the first-order diffraction efficiency is 

f l ( x ,  c o ) -  [El(x)[2 - 4q0~ 
]Eo(0)12 )~ + 4~02 sin2 [x /~  + 4q02 x/2]. 

(15) 
This equation was first derived by Kogelnik (1967) and is 
commonly used in the theory of volume phase holograms 
(see, for instance, Hariharan 1984). For given co, (15) 
shows how the diffraction efficiency depends on the thick- 
ness x of the striated medium. (We assume, of course, that 
reflections from the boundaries of the medium may be 
neglected, which is a reasonable approximation in the 
case of a muscle fibre immersed in saline.) 

It is particularly interesting to consider the diffraction 
efficiency at the first-order Bragg angle con, which is deter- 
mined by the Bragg equation 

2d sincoB = 2. (16) 

In fact, when the Bragg condition is satisfied the wavevec- 
tors k o and k~ in Fig. lb  form two sides of an isosceles 
triangle with the reciprocal lattice vector G along its base. 
In that case, ko = kl, and the coefficient )fi in equation 
(14a) therefore vanishes. Hence, the diffraction efficiency 
at the Bragg angle is given by 

f~ (x, coB) = sin 2 (q01 x). (17) 

The variation of first-order Bragg intensity with thickness 
predicted by this equation is shown in Fig. 3, where we 
have taken the optical constants no and An~ appropriate 
to a muscle fibre with a sarcomere length of 3.1 gin. The 
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Fig. 3. Theoretical first-order diffraction efficiency fl at the Bragg 
angle as a function of thickness for a rectangular slab in the two- 
beam approximation according to (17). The optical parameters used 
were appropriate to glycerinated psoas muscle: a = 1.5 gm, b = 2 gin, 
d = 3.1 gin, and An~ = 0.0074. The sample is assumed to be mounted 
in glycerinating solution of refractive index n 1 = 1.405 
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Fig. 4. Theoretical "co-scan" showing the variation of the first-order 
diffraction efficiency fl with angle of incidence co according to the 
two-beam-approximation (15). The calculation was performed for a 
slab of thickness 80 ~tm with other parameters as in Fig. 3. Note that 
normal incidence occurs at co = 0 and the main peak occurs at the 
first-order Bragg angle determined by (16) 

sinusoidal intensity variation is readily apparent in this 
figure: the diffraction efficiency reaches 100% at a thick- 
ness of about i85 ~tm, at which point the zeroth-order 
beam is completely extinguished, whilst at about 350 gm 
the Bragg intensity falls to zero, when all of the light has 
returned to the zeroth-order beam. This effect was also 
noted by Huxley (1990) using his waveguide theory. Sim- 
ilar coupled-wave behaviour is well-known in the "dy- 
namical" theory of X-ray diffraction (see, for instance, 
Cowley 1975), where it is generally referred to as the Pen- 
dellfsung effect by analogy with the behaviour of coupled 
pendulums. However, we prefer not to use the term "dy- 
namical diffraction" in the case of muscle as this might 
cause confusion with the dynamics of muscle contraction 
itself. 

Muscle fibres typically have thicknesses in the range of 
50-100 gin. The Bragg diffraction to be expected from 
Fig. 3 is therefore 20 -60%,  so that coupled-wave effects 
are likely to be quite significant in optical diffraction from 
single muscle fibres. The high diffraction efficiency and 
the corresponding attenuation of the zeroth-order beam 

are obvious features to look for experimentally, but a 
more detailed test of the theory may be obtained by mea- 
suring the diffraction efficiency as a function of the angle 
of incidence co to produce a so-called "co-scan" (Baskin 
et al. 1981). Away from the Bragg angle, the coefficient Xt 
no longer vanishes and the theoretical diffraction efficien- 
cy in the two-beam approximation is given by (15). The 
predicted angular dependence of the diffraction efficiency 
is shown in Fig. 4 for a sample of thickness 80 gm and 
with other parameters as for Fig. 3, The diffraction effi- 
ciency reaches a maximum value of 43 % when the angle 
of incidence co is equal to the Bragg angle (in this case 
about 5.9°), and subsidiary peaks occur either side of this. 
Note that Fig. 4 does not imply any structure in the dif- 
fraction order itself, but rather it just shows how the in- 
tensity of the first-order diffraction peak varies with the 
angle of incidence. One can see from (15) that, in the case 
where (Pi x < re, the first minima either side of the Bragg 
peak occur where 

,jz  + (18) 
X 

In the limit of very weak modulation, (p 1 in this equation 
may be neglected, so that the positions of the minima are 
determined solely by the sample thickness x and the pa- 
rameter ;gl, which is itself determined by the wave-vectors 
in equation (14 a). In other words, in the limit of very weak 
modulation the angular dependence of the diffraction effi- 
ciency is determined purely by "kinematical" conditions. 
One can visualize the diffraction order in this kinematical 
limit as arising from the interference between waves dif- 
fracted by successive thin slices within the striated medi- 
um. In this limit the minima in Fig. 4 would arise from 
destructive interference between the diffracted waves. (A 
more sophisticated view of the same process is to say that 
if the striated medium in Fig. I a has a finite thickness, 
then the reciprocal lattice points in Fig. 1 b should be 
smeared out by convolution with the Fourier transform 
of a top-hat function representing the slab of finite thick- 
ness x.) 

In the kinematical limit, the incident wave is assumed 
to have a constant amplitude throughout the sample, and 
the diffracted wave produced by each slice of the medium 
is assumed not to undergo any further diffraction. 
Though this is the approach which is often used in ele- 
mentary treatments of diffraction, it must be emphasized 
that the kinematical theory would not be expected to 
apply to well-ordered muscle fibres since the index modu- 
lation is strong enough to diffract 60% of the incident 
beam after a distance of about 100 gm. The angular de- 
pendence of the diffraction efficiency shown in Fig. 4 is 
therefore not a purely kinematical effect: the modulation 
parameter q0~ not only determines the strength of the 
diffraction but also affects the shape of the angular depen- 
dence in Fig. 4, and in particular it determines in part the 
positions of the first minima through (18). 

Diffraction by a medium with curved striations 

In the discussion so far we have assumed that the stria- 
tions are perfectly straight, but for real muscle fibres ex- 
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amined under a microscope some degree of curvature is 
generally apparent  (see, for instance, Huxley and Nieder- 
gerke 1958). Brenner (1985) showed experimentally that 
curvature of the striations has an important  effect on the 
diffracted intensity. The situation can be dealt with theo- 
retically as follows. Consider a medium with a pattern of 
curved striations as shown in Fig. 5. Here we have intro- 
duced ripples into the striation pat tern whilst maintain- 
ing the same periodicity d in the y-direction. This picture 
therefore represents a muscle fibre in which the sarcomere 
length d is well defined but where there is a regular dis- 
placement of myofibrils along the fibre axis. Mathemati-  
cally the ripples in the striation pattern may be described 
by some curve y = u (x). Hence the dielectric constant e (y) 
in (2) in the presence of the ripples becomes e(y-u(x)). 
The Fourier series for this function in place of (5) is 

(x, y) = ~, ~h exp [j h G(y-  u(x)]. (19) 
h 

So the coupled-wave equation (6) in the presence of 
curved striations becomes 

dEz (k2° - k2) E, + jr22 
dx - j  2k~, ~ ~" ~'hEl-h exp[--jhGu(x)]. 

h*o (20) 

We cannot in general find an analytical solution to this 
equation even in the two-beam approximation,  so we are 
obliged to solve the problem by numerical methods in- 
stead. I t  is necessary to restrict the calculation to a finite 
number  of beams, and for most  of our numerical integra- 
tions we have worked with seven beams corresponding to 
/=0 ,  + 1, +_ 2 and +_ 3. The main interest is still in the 
zeroth-order ( /=0)  and first-order ( /= +1)  beams, since 
these are readily studied experimentally, but the inclusion 
of coupling to the higher-order beams makes the calcula- 
tion more accurate• With seven beams, the coupled-wave 
Eq. (20) produces seven differential equations for the com- 
plex amplitudes E~, and for the purposes of computat ion 
these were converted to fourteen simultaneous differential 

equations for the real and imaginary parts of E~. These 
equations were solved using a standard Runge-Kut ta  al- 
gorithm on an IBM PS/2 Model 70 computer  fitted with 
an 80387 maths co-processor. 

Figure 6a  shows a theoretical co-scan for the first- 
order diffracted beam (l = 1) for the case of straight stria- 
tions (that is, for u = 0 in Eq. 20). We have used the same 
parameters  as for the two-beam calculation shown in 
Fig. 4 to simulate a fibre of thickness 80 gm with 
d=3.1 ~tm, and it can be seen from comparison with 
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Fig. 5. A slab of cross-striated material of period d with curved 
striations described by y=u(x). The Cartesian co-ordinate system 
used here is the same as in Fig. I a 
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Fig. 6a-f.  Theoretical o~-scans for an 80 gm 
slab with curved striations as sketched in 
each inset (not to scale), a shows the predic- 
tion for straight striations and is the same as 
Fig. 4. In b the striations are bowed by a si- 
nusoidal function u(x) containing a single 
half wavelength of amplitude 1 gin. The effect 
of a full-wave ripple of 1 gm amplitude is 
shown in e, whilst for d and e the amplitudes 
are reduced to 0.5 ~m and 0.1 Ixm respective- 
ly. In f, 5 gm of skew is introduced and this 
shifts the Bragg peak compared to a 
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Fig. 6 a that the seven-beam integration produces almost 
exactly the same angular dependence, especially in the 
important region near the Bragg angle. To examine the 
effect of ripples in the striations, we have used a sinusoidal 
displacement function of the form 

u (x) = u o sin(2 n X/2o) . (21) 

Figure 6 b shows the effect of a single half-wave ripple 
with amplitude u o = 1 gm and wavelength 2 o = 160 pro; 
this produces the bowed striation pattern shown in the 
inset. The change in the angular dependence compared to 
Fig. 6 a is immediately apparent: the subsidiary maxima 
either side of the Bragg angle are more intense, whilst the 
minima are filled in, and there is an appreciable decrease 
in the diffraction efficiency at the Bragg angle itself. The 
effect of a full-wave ripple (2o = 80 gin) of the same ampli- 
tude is even more dramatic, as shown in Fig. 6c. The 
diffraction efficiency in this case is no longer a maximum 
at the Bragg angle, but instead we find that the subsidiary 
peaks on the left-hand side are greatly accentuated and 
slightly shifted to the right. The original Bragg peak has 
also shifted to the right, to such an extent in fact that it has 
merged with one of the subsidiary maxima. This trend is 
perhaps clearer for a full-wave ripple of 0.5 gm amplitude 
shown in Fig. 6d, but even with an amplitude of just 
0.1 gm there is an appreciable change in the-subsidiary 
maxima as shown in Fig. 6 e. 

The diffraction efficiency at any angle is clearly very 
sensitive to curvature of the striations. Overall we see that 
the effect of a full-wave ripple is to make the m-scans in 
Fig. 6 c - e  markedly asymmetric about the Bragg angle, 
in contrast to the almost perfectly symmetrical angular 
dependence for the straight striations in Fig. 6 a and the 
half-wave ripple in Fig. 6 b. A rather different result is 
obtained if we introduce skew into the striations with a 
displacement function of the form u (x) = ~ x. This tilts the 
Bragg planes, as shown in Fig. 6 f for a total skew of 5 pm 
across the fibre; as one would expect, the Bragg peak is 
simply shifted relative to that in Fig. 6 a since the Bragg 
condition in (16) is now satisfied when the incident beam 
makes an ange co B to the planes themselves rather than to 
the normal. 

Diffraction by a cylindrical fibre 

Real muscle fibres are not in fact plane slabs but are more 
or less cylindrical. Indeed, refraction by the cylindrical 
surface of a fibre was demonstrated experimentally by 
Marikhin and Myasnikova (1970), and its effect on the 
diffraction pattern needs to be considered. However, to 
solve the coupled-wave equation in a cylindrical geome- 
try would be rather difficult, and we adopt instead a sim- 
pler approach based on ray optics as illustrated in Fig. 7. 
This figure shows a cross-section of a cylindrical fibre of 
radius r together with the path of a zeroth-order light ray 
projected onto the same plane. The wave-vector of the 
light ray will in general also possess a component Ky 
normal to this plane and parallel to the fibre axis given by 

2n 
K,  = 2 -  sine), (22) 

i 

z O 

Fig. 7. Ray diagram showing refraction by a cylindrical fibre of 
radius r projected onto the x z  diametrical plane. A ray with wave- 
vector component K ~  in this plane is incident at point P a height 
s above the fibre axis 0 and makes an angle of incidence o02 with the 
normal. The refracted ray of wavevector k~ inside the fibre makes an 
angle 0 z with normal and leaves the fibre at point Q having tra- 
versed a thickness x given by (27). The Cartesian co-ordinate system 
used to analyse this problem is also shown 

where co is the angle of incidence projected onto the hor- 
izontal plane containing the fibre axis and the incident 
beam, as in the preceding theory. Ky is measured parallel 
to the refracting surfaces of the fibre and it is therefore 
conserved during refraction. Figure 7 shows the refraction 
with occurs in the xz-plane perpendicular to the fibre axis. 
We choose the x-axis parallel to PQ, which is the path of 
light beam inside the fibre projected onto the xz-plane. 
Snell's law for refraction in this plane at point P may be 
written as 

Kx~ sinco 2 = k x sin02 , (23) 

where co2 is the angle of incidence in the xz-plane, 02 is the 
corresponding angle of refraction measured inside the 
fibre, and K~z is the wave-vector of the incident beam in 
the xz-plane inside the saline of refractive index n 1 and is 
given by 

2n 
Kx~ = ~ -  (n~ - sin2co) 1/2 . (24) 

Note that the wave-vector component k s inside the fibre 
is still given by (8). 

The thickness of the fibre traversed by the ray shown 
in Fig. 7 is 

x = 2r cos02 . (25) 

It follows from the geometry that 

s 
sinco2 = - ,  (26) 

r 

where s is the height of the incident ray above the fibre 
axis 0 as shown in the figure. Making use of (22)-(26) 
together with (8), we find that the effective thickness of the 
fibre for this ray is 

I s2(no _ sin2 0) 
x = 2 r  1 - n o  ~r2(n ~ Z ~ ) j  ' (27) 
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Fig. 8a, b. Theoretical c0-scans showing the first-order diffraction 
efficiency for a cylindrical fibre in the two-beam approximation. 
a corresponds to a broad beam described by (28b). 5 shows the be- 
haviour for a narrow beam of 50 gm diameter, governed by (28c). 
The fibre was assumed to be immersed in a glycerol-saline solution 
of refi-active index n 1 = 1.405, and other parameters were as for Figs. 
3 and 4 

The ray-optics approach is valid provided that the 
fibre radius r is much greater than the light wavelength Z. 
In that case, the incident light beam can be split into ray 
bundles of thickness ds, and the fibre thickness presented 
to each ray bundle is determined through (27) by the 
incident height s. The effect of striations in this model will 
be to set up a coupled-wave system for each ray bundle. 
If the whole fibre diameter is illuminated, then a fraction 
ds/2r of the incident light lies in a ray bundle of thickness 
ds, and the contribution of this bundle to the first-order 
diffraction efficiency is 

ds 
dFz --- 2r f~ (x, o~) , (28 a) 

which leads to the differential equation 

dF1 _ fl (x, co) (28 b) 
ds 2r 

Note that the right-hand side of this equation depends 
implicitly on the ray height s by virtue of (27). 

The simplest approach to integrating (28 b) is to treat 
the coupled waves in the two-beam approximation, in 
which case f l  (x, co) is given by (15). We have performed 
the integration numerically using the Runge-Kutta al- 
gorithm on our PS/2 computer, and the calculated first- 
order diffraction efficiency F 1 for a cylindrical fibre of 

w 

Fig. 9. Schematic diagram showing a beam of width W being fo- 
cussed on to a muscle fibre by a lens of focal-length f The nominal 
angle of incidence is co as before, but rays in the focussed beam are 
actually incident at angles from c~ - e to co + c~. This produces some 
degree of angular averaging as discussed in the text 

diameter 80 gm is shown in Fig 8 a. This figure should be 
compared with Fig. 4, which shows the results of a two- 
beam calculation for a plane slab of thickness 80 gm. The 
effects of refraction by the cylindrical fibre are apparent in 
Fig. 8 a: the minima in Fig. 4 are now partly filled in; the 
subsidiary maxima are slightly displaced; and the diffrac- 
tion efficiency at the Bragg angle is somewhat reduced. 

Refraction effects are reduced if we illuminate the mus- 
cle fibre with a narrow beam, so that most of the rays in 
the beam pass through approximately the same fibre 
thickness. Suppose that circular beam of width w < 2 r is 
incident of the fibre. This beam should be divided into 
horizontal strips of width ds to define the different ray 
bundles, and allowing for the circular cross-section of the 
beam Eq. (28 b) becomes 

dF 8 
ds - ~ w 2 (w2/4 - sz)l/2 f l  (x, ca). (28 c) 

We have integrated this equation numerically for a beam 
width of 50 gm and a fibre diameter of 80 gm, and the 
resulting co-scan is shown in Fig, 8 b. This bears a much 
closer similarity to Fig. 4: the minima are no longer filled 
in and the diffraction efficiency at the Bragg angle is hard- 
ly reduced at all, although the subsidiary maxima are still 
slightly shifted. Hence by concentrating the incident 
beam into somewhat less than the fibre diameter we may 
reduce the effects of refraction. 

Diffraction of a focussed laser beam 

We need to use a lens to focus the incident beam down to 
a diffraction-limited spot on the muscle fibre. Concentrat- 
ing the beam in this way reduces the effect of refraction by 
the cylindrical fibre, and there are also in fact some im- 
portant  practical advantages which are discussed in the 
following section. However, one important  disadvantage 
of using a focussed beam must be addressed here. Fig- 
ure 9 shows a ray diagram where the incident beam of 
width Wis focussed by a lens of focal length f .  The nom- 
inal angle of incidence is co as before, but it is clear that the 
rays converging on the focal point are actually incident 
over a range of angles from co - ~ to co + ~, where ~ is the 



half-angle subtended by the focussed beam at the fibre 
and is given by 

= tan-  ~(W/2f). (29) 

The lens therefore introduces some degree of angular av- 
eraging with respect to co, and if the angular spread 2 e is 
too large then the characteristic features of the co-scans 
shown in Figs. 4, 6 and 8 will be lost. 

In order to assess the effect of angular averaging on 
our experimental results, we have developed a somewhat 
simplified mathematical model. In the first place, we treat 
this as a two-dimensional problem and consider only the 
effect of focussing in the scattering plane itself. Secondly, 
we neglect any complications arising from diffraction by 
the lens and treat the focussed beam as consisting of well 
defined ray bundles (a valid approximation provided that 
2/W < W/f). Thirdly, we treat diffraction by the fibre us- 
ing the two-beam approximation as discussed previously. 
In that case, the effective first-order diffraction efficiency 
for the focussed beam is 

F 1 (x, co) = ~ I (0) f~ (x, co + 0) dO, (30) 

where f~ (x, co + 0) defined in (15) is the first-order diffrac- 
tion efficiency in the two-beam approximation for a medi- 
um of thickness x at angle of incidence co + 0, and I (0) dO 
is the fraction of the incident intensity contained in the 
ray bundle focussed into the angular interval from 0 to 
0 + dO. We make the further symplifying assumption that 
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Fig. 10. Theoretical first-order co-scan for a beam of width IV= 1 mm 
focussed by a lens with focal length f= 40 ram. The other parame- 
ters are the same as for Fig. 4 
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the laser-beam intensity before the lens is spread uniform- 
ly over the beam with W, in which case 

f 1(0) = ~ sec20. (31) 

We have evaluated the integral in (30) using (15) and 
(31) by means of the Runge-Kutta algorithm on our com- 
puter. A theoretical co-scan is shown in Fig. 10 for a beam 
of width I mm focussed by a lens of focal-length 40 mm 
onto a plane slab of thickness 80 gin. Comparison with 
the corresponding co-scan for an unfocussed beam in 
Fig. 4 shows that the diffraction efficiency at the Bragg 
angle is reduced from 43% to 40% and the subsidiary 
minima are partly filled in. The effects of angular averag- 
ing in this case are therefore modest because the angular 
spread of the incident beam (about 1.5 °) is somewhat 
smaller than the angular width of the peak in Fig. 4. How- 
ever, use of a lens with shorter focal would increase the 
effect of angular averaging. In practice it is therefore im- 
portant to choose a lens whose focal length is only just 
short enough to produce a focal spot smaller than the 
fibre diameter. 

Materials and methods 

Fibre preparation 

The muscle fibres used in this investigation were dissected 
from glycerinated rabbit psoas muscle, which was pre- 
pared by following the same procedure as Berovic et al. 
(1989). Fibres were stored a t - 2 0 ° C  for up to three 
months in a glycerinating solution consisting of 50% 
glycerol and 50% relaxing solution containing 3 mM 
ATP (Brenner 1983). We believe that the presence of ATP 
in the glycerinating solution helps to preserve the sarcom- 
ere order by preventing rigor. Fibres were carefully dis- 
sected in this solution without either twisting them or 
bending them unnecessarily. All of the fibres which we 
used were crystal clear when viewed under a dissecting 
microscope and they displayed strong irridescence in 
white light. Single fibres were mounted inside an optical 
cell (Berovic et al. 1989), which was filled with glycerinat- 
ing solution. We found that fibres mounted in this solu- 
tion retained their order better than those in pure relaxing 
solution. 

I . _  
Laser | ; 

r ' -  

I ~  D2 

D 3 

ND L / SC ' ~ " ~ 1  1:)4 
I . . . /  

Fig. 11. Schematic diagram showing 
the optical apparatus used to record 
co-scans from single muscle fibres. The 
angle of rotation co is also shown, but 
note that  the fibre is actually slightly 
offset from the centre of rotation to 
reduce the excursion of the laser spot. 
ND neutral-density filter; L -  focussing 
lens; SC-sample  cell; F -  muscle fibre; 
D 1-D 4 -photodiodes 
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Optical apparatus and procedure 

The optical apparatus used for our diffraction measure- 
ments is shown in Fig. 11. The light source was a He-Ne 
laser (Spectra-Physics Model 120S) producing approxi- 
mately 8 mW of vertically polarized light of wavelength 
632.8 nm. The intensity of the light falling on the sample 
could be reduced with a neutral-density filter, and a lens 
was used for measurements with a focussed beam. Four 
large-area (1 cm 2) photodiodes (RS Components Ltd., 
Corby, Northants., UK) were used to monitor the intensi- 
ties of the diffraction orders. Each photodiode signal 
(nominally 0.35 mA/mW) was amplified by a current-to- 
voltage converter to give a nominal output sensitivity of 
1 V/mW. The output signals were recorded using four 
calibrated analogue-input channels of a BBC Model B 
microcomputer (Acorn Computers Ltd., Cambridge, UK) 
fitted with an ADC band-gap reference diode. The com- 
puter was also used to control a stepper motor, which 
rotated the sample cell about a vertical axis to vary the 
angle of incidence co. With this equipment, "co-scans" for 
up to four diffraction orders could be recorded simulta- 
neously. 

The optical quality of the muscle fibres was of prime 
importance, so we first examined the diffraction pattern 
for each fibre when it was illuminated with an unfocussed 
laser beam. Well-ordered fibres produced a series of sharp 
diffraction lines separated by a weak background of dif- 
fuse scattering, indicating that the sarcomere length d was 
well defined. (Occasionally what appeared to be a single 
fibre under the dissecting microscope turned out to be 
two closely associated fibres, whose diffraction lines were 
doublets.) The sarcomere length d was determined at this 
stage by measuring the separation of the first-order dif- 
fraction lines with a typical accuracy of 1%. The fibre 
diameter was measured using a microscope and graticule 
after the fibre was mounted in the sample cell. 

The diffraction lines produced by muscle fibres are 
superficially like the "layer lines" produced by a one- 
dimensional periodic lattice. However, for a fibre with 
three-dimensional order these lines are in fact an artefact 
due to refraction by the cylindrical fibre (Marikhin and 
Myasnikova 1970). Close inspection shows that the inten- 
sity in the diffraction lines is concentrated along the me- 
ridian, and when a focussed laser beam is used a series of 
meridional diffraction spots is obtained instead of the 
diffraction lines. The meridional spots can also be used to 
test for skew in the fibre. In the absence of skew the 
meridian is horizontal, and at normal incidence the inten- 
sities of right-hand and left-hand diffraction order (+  l in 
the preceding theory) should be equal (assuming no cur- 
vature in the striations). The effect of skew may be either 
to tilt the meridian relative to the horizontal or to pro- 
duce left-right asymmetry in the diffracted intensities at 
normal incidence. Most of our measurements were there- 
fore performed on fibres whose meridian was approxi- 
mately horizontal and which produced a reasonably sym- 
metrical diffraction pattern at normal incidence. 

The effect of refraction on an co-scan was discussed 
above, and the use of a focussed beam not only reduces 

the refraction effect but also has two important practical 
advantages: 

1) All of the incident light hits the fibre and the total 
intensity of each diffraction spot can be recorded directly 
using a photodiode without the need for an imaging lens. 
Hence absolute values of diffraction efficiencies can read- 
ily be determined. 
2) Only a very short segment (~50  pm) of the muscle 
fibre is illuminated by a focussed beam. As was shown by 
Brenner (1985), it is much more feasible to find well- 
ordered striations in such a short segment than in one 
1 mm or so long, which would be necessary for an unfo- 
cussed beam. 

In the experiment, the photodiodes were placed about 
12.5 cm away from the focal point so as to intercept the 
meridional spots of diameter about 3 ram. Each diode 
was positioned so that when the Bragg condition for its 
order was satisfied the spot fell on the centre of the diode. 
As the cell was rotated the angle of diffraction Ot for order 
1 varied according to the grating formula, 

d(sinm + sin(0z-o))) = 1~,. (32) 

Fixing the position of each photodiode therefore meant 
that for some extreme angles of incidence the diffraction 
spot missed the diode, but by centring the diffraction spot 
at the Bragg angle we ensured that each diode gave a true 
reading of the diffracted intensity in the most important 
region either side of the Bragg peak. Any artefacts due to 
diode positioning were therefore confined to incident an- 
gles well away from the Bragg angle, where the weak 
diffracted intenstiy is in any case of little interest. 

We believe that the use of a focussed laser beam was 
very important in obtaining reliable quantitative diffrac- 
tion data. Note, however, that this procedure does pos- 
sess two possible disadvantages: 

i) When the optical cell is rotated away from normal 
incidence, refraction by the fluid in the parallel-sided cell 
displaces the beam so that it no longer passes through the 
centre of rotation. This causes the laser spot to scan along 
the fibre and may therefore produce artefacts in an co-scan 
if the fibre order varies along its length. To counteract this 
effect, we offset the fibre from the centre of rotation by 
about 1 mm along the beam direction at normal inci- 
dence. When the cell was rotated the displacement due to 
the offset almost exactly cancelled that due to refraction, 
and the excursion of the laser spot along the fibre during 
an co-scan was thus limited to less than + 100 gm. 
2) As discussed in the previous section, the use of a fo- 
cussed laser beam introduces a range of incident angles by 
virtue of the cone of focussed rays. Hence an m-scan ob- 
tained with a focussed beam incorporates some degree of 
angular averaging because the angle of incidence m is no 
longer sharply defined. In our experiments we used a lens 
of focal length 40 mm to produce a focal spot of about 
50 gm diameter on the muscle fibre. A defocussed spot of 
about 3 cm diameter was found on a screen placed 99 cm 
behind the sample cell, and this implies that the beam 
divergence was about 1.7 °. This is probably an overesti- 
mate of the effective beam divergence because of the 
Gaussian profile of the laser beam. 
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Results and discussion 

We have obtained results from several muscle fibres 
which illustrate quite well the coupled-wave effects de- 
scribed in the theoretical section. Some of our best results 
are shown in Fig. 12a for a fibre of thickness 71 gm and 
sarcomere length 3.04 gin. Curve (i) is an co-scan for the 
zeroth-order beam, which passes straight through the fi- 
bre. The intensity of this order is significantly reduced by 
diffraction in the region of the first-order Bragg angle on 
either side of normal incidence. Curves (ii) and (iii) show 
the signals from the photodiodes monitoring the two 
first-order diffraction spots (/= __ 1 in the theory); the 
light lost from the incident beam does indeed appear in 
the diffraction orders, and the peak first-order diffraction 
efficiency in this case is 34%. At higher angles of incidence 
some of the incident beam is diffracted into the third 
order, shown in curve (iv), whilst the second-order dif- 
fracted intensity is virtually zero for all angles of incidence 
at the sarcomere length of 3.04 gm used here. 

Figure 12b presents the theoretical c0-scans corre- 
sponding to Fig. 12a calculated using the seven-beam 
coupled-wave approximation for a medium with straight 
striations. Curve (i) illustrates the behaviour of the zeroth- 
order beam, whilst (ii) and (iii) show the diffraction effi- 
ciencies for the first-order diffraction spots. The peak 
first-order diffraction efficiency is predicted to be 36%, 
which is in remarkably good agreement with the experi- 
mental value. Furthermore, the theoretical second-order 
diffraction efficiency almost vanishes at the sarcomere 
length of 3.04 gm, and this is also borne out by experi- 
ment. On the other hand, the comparison of theory with 
experiment for the third order, curve (iv), is much less 
satisfactory: whereas the theoretical peak in Fig. 12b is 
very narrow with a maximum diffraction efficiency of 
53% at the third-order Bragg angle, the experimental 
co-scan in Fig. 12a shows a much broader and rather 
weaker peak with a maximum of only 15%. 

Much better agreement between theory and experi- 
ment is obtained once we introduce a small amount of 
curvature into the striation pattern. Close examination of 
the experimental first-order peaks in Fig. 12a reveals two 
of the characteristic effects of curvature which were illus- 
trated in the theoretical co-scans of Fig. 6. First of all, the 
minima either side of the Bragg peak are filled in, which 
may be due to a bow in the striation pattern as illustrated 
in Fig. 6 b. Secondly, there is a distinct asymmetry in the 
heights of the subsidiary maxima similar to that caused 
by the full-wave ripple in Fig. 6 e. We have therefore re- 
peated the theoretical seven-beam calculation incorpo- 
rating both a bow (of amplitude 0.75 gin) and a ripple (of 
amplitude 0.15 gm) into the striation pattern. The result- 
ing c0-scans in the presence of these curved striations are 
shown in Fig. 12c. The similarity of the first-order peaks 
to the experimental data in Fig. 12 a is most striking: both 
the asymmetry and the depth of modulation of the sub- 
sidiary maxima are now well reproduced. As one might 
expect, the introduction of a small amount of curvature 
into the striations has a much greater effect on the third- 
order peak, which is considerably broadened and reduced 
in intensity. The shape of this peak is very sensitive to the 
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Fig. 12a-e .  Experimental co-scans for a fibre of thickness 71 gm 
with sarcomere length 3.04 gm are shown in a. Curve (i) shows the 
transmission efficiency for the zeroth-order beam. Curves (ii) and 
(iii) show the first-order diffraction efficiencies (l = _+ 1 in the theory), 
which reach 34% at the Bragg angle. Curve (iv) shows the diffraction 
efficiency for the third order. Note that the second-order diffraction 
efficiency is virtually zero at the sarcomere length used here. b shows 
the theoretical o-scans corresponding to a calculated using the 
seven-beam approximation for a medium with perfectly straight 
striations. The peak diffraction efficiencies are 36% for the first 
order and 53% for the third order, c shows the corresponding 
theoretical c0-scans for a medium with curved striations: a bow of 
amplitude 0.75 gm together with a full-wave ripple of amplitude 
0.15 gin. Compared to b the shape of the first-order peaks (ii) and 
(iii) is much better reproduced, and the irregular broadening of the 
third-order peak (iv) is similar to the experimental data in a 

precise function used to represent the curvature of the 
striations, so Fig. 12c should only be regarded as being 
suggestive of the type of curvature which may have been 
present in the actual muscle fibre which produced 
Fig. 12 a. The overall agreement between theory and ex- 
periment is nonetheless very good, and lends strong sup- 
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Fig. 13 a -e .  Experimental first order co-scans for a fibre of thickness 
58 pm with sarcomere length 2.45 ~tm are shown in a. The maximum 
diffraction efficiency is 24%. b shows the corresponding theoretical 
co-scans calculated using the seven-beam approximation for stria- 
tions containing a bow of amplitude 0.35 gm and with 1.6 pm of 
skew. Experimental first-order co-scans for the same fibre but using 
an unfocussed laser beam, are shown in e 

ory and are shown in Fig. 13 b. The maximum theoretical 
diffraction efficiency is 30% compared to the observed 
value of 24%. Experimental results for the same fibre 
using an unfocussed laser beam are shown in Fig. 13 c. The 
peaks are now much broader, and the subsidiary maxima 
are reduced to barely perceptible bumps. The broadening 
of the Bragg peak itself is far more severe than could be 
accounted for by refraction due to the cylindrical fibre (cf. 
Fig. 8). This may be because the curvature of the stria- 
tions varies along the millimetre length of fibre illuminat- 
ed by the unfocussed laser beam (Brenner 1985). The re- 
sultant co-scan is then the superposition of the co-scans 
for segments with different curvature, which causes the 
sharp angular dependence for the single 50 gm segment in 
Fig. 13a to be lost. Note that the vertical scale for 
Fig. 13 c does not reflect the true diffraction efficiency of 
the fibre, as only part of the incident beam hit the fibre 
and only part of the diffraction line was intercepted by the 
photodiode. Comparison of Fig. 13 a with Fig. 13 c there- 
fore dearly demonstrates the practical advantages of us- 
ing a focussed beam for our diffraction measurements. 

In our experience only a small percentage of muscle 
fibres produce co-scans as nearly ideal as Fig, 12a or 
Fig. 13 a. The sensitivity of the co-scans to even the slight- 
est curvature of the striations is a major practical difficul- 
ty in the study of optical diffraction by muscle fibres. 
Furthermore, changes in the curvature of the striations 
may contribute to intensity changes in other optical ex- 
periments. One example is the investigation of transpar- 
ency changes for whole muscle by Hill (1953a, b) and 
Flitney (1975) together with the more recent work on 
single fibres by Leung and Cheung (1988). These workers 
observed changes in muscle transparency and diffracted 
intensity on stretching or activating muscle. Our work 
suggests that such intensity changes might be produced 
by changes in the striation pattern: to verify this, one 
would need record co-scans before and after the physio- 
logical state of the muscle is altered. 

Our work may also be relevant to studies of changes in 
the birefringence of muscle (Haskell et al. 1989, Chen et al. 
1989, Peckham and Irving 1989): since the refractive in- 
dex is different for the E- and O-rays their intensities will 
be affected differently by changes in the curvature of the 
striations. More theoretical and experimental work is 
needed to clarify this point. 

port to the coupled-wave theory for optical diffraction 
from single muscle fibres. 

Figure 13 a shows the experimental c0-scans for the 
two first-order diffraction spots for a fibre of thickness 
58 pm with sarcomere length 2.45 gm. The peaks here are 
more symmetrical than those in Fig. 12a, but there is still 
a significant filling in of the minima, perhaps due to some 
bowing of the striations coupled with a certain amount of 
angular averaging from the focussed beam. There is also 
some evidence of skew for this fibre, as both peaks are 
displaced from the theoretical Bragg angle (Rfidel and 
Zite-Ferenczy 1979; Gilliar et al. 1984). Theoretical peaks 
for slightly bowed striations (amplitude 0.35 gm) with 
1.6 pm of skew were calculated using the seven-beam the- 

Conc lus ions  

We have presented a detailed theoretical model for opti- 
cal diffraction by well-ordered muscle fibres based on 
Kogelnik's coupled-wave theory. Experimental studies of 
diffraction of a focussed laser beam have yielded first- 
order diffraction efficiencies as high as 34%, in good 
agreement with the theoretical prediction. This demon- 
strates that coupled-wave effects are indeed important in 
optical diffraction by well-ordered single muscle fibres. 
The theoretical model shows that the diffraction efficien- 
cy is extremely sensitive to any curvature in the striation 
pattern, and this is borne out by our experimental results, 
which exhibit the characteristic features of bows and rip- 
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ples in the striations. This observa t ion  has wider implica- 
t ions for the in te rpre ta t ion  of other  optical experiments  in 
muscle physiology, such as changes in muscle t ransparen-  
cy and birefringence. 
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